Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(2): 240-254, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934136

RESUMO

Ageing results in lower exercise tolerance, manifested as decreased critical power (CP). We examined whether the age-related decrease in CP occurs independently of changes in muscle mass and whether it is related to impaired vascular function. Ten older (63.1 ± 2.5 years) and 10 younger (24.4 ± 4.0 years) physically active volunteers participated. Physical activity was measured with accelerometry. Leg muscle mass was quantified with dual X-ray absorptiometry. The CP and maximum power during a graded exercise test (PGXT ) of single-leg knee-extension exercise were determined over the course of four visits. During a fifth visit, vascular function of the leg was assessed with passive leg movement (PLM) hyperaemia and leg blood flow and vascular conductance during knee-extension exercise at 10 W, 20 W, slightly below CP (90% CP) and PGXT . Despite not differing in leg lean mass (P = 0.901) and physical activity (e.g., steps per day, P = 0.735), older subjects had ∼30% lower mass-specific CP (old = 3.20 ± 0.94 W kg-1 vs. young = 4.60 ± 0.87 W kg-1 ; P < 0.001). The PLM-induced hyperaemia and leg blood flow and/or conductance were blunted in the old at 20 W, 90% CP and PGXT (P < 0.05). When normalized for leg muscle mass, CP was strongly correlated with PLM-induced hyperaemia (R2  = 0.52; P < 0.001) and vascular conductance during knee-extension exercise at 20 W (R2  = 0.34; P = 0.014) and 90% CP (R2  = 0.39; P = 0.004). In conclusion, the age-related decline in CP is not only an issue of muscle quantity, but also of impaired muscle quality that corresponds to impaired vascular function.


Assuntos
Hiperemia , Humanos , Perna (Membro)/irrigação sanguínea , Exercício Físico/fisiologia , Joelho , Terapia por Exercício/métodos , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional/fisiologia
2.
J Appl Physiol (1985) ; 133(4): 986-1000, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107986

RESUMO

Responses to exercise at a given percentage of one's maximum rate of oxygen consumption (V̇o2max), or percentage of the power associated with V̇o2max during a graded exercise test (i.e., PGXT), vary. The purpose of this study was to determine if differences in critical power (PCRIT, maximum metabolic steady state) and work-prime (W', the amount of work tolerated above steady state) are related to training-induced changes in endurance. PCRIT, W', V̇o2max, and other variables were determined before and after 22 adults completed 8 wk of either moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT) performed at fixed percentages of PGXT. On average, PCRIT increased to a greater extent following HIIT (MICT: 15.7 ± 3.1% vs. HIIT: 27.5 ± 4.3%; P = 0.03), but the magnitude of change varied widely within each group (MICT: 4%-36%, HIIT: 4%-61%). The intensity of the prescribed exercise relative to pretraining PCRIT, not PGXT, accounted for most of the variance in changes to PCRIT in response to a given protocol (R2 = 0.61-0.64; P < 0.01). Although PCRIT and V̇o2max were related before training (R2 = 0.92, P < 0.01), the training-induced change in PCRIT was not significantly related to the change in V̇o2max (R2 = 0.06, P = 0.26). Before training, time-to-failure at PGXT was related to W' (R2 = 0.52; P < 0.01), but not V̇o2max (R2 = 0.13; P = 0.10). Training-induced changes in time-to-failure at the initial PGXT were better captured by the combined changes in W' and PCRIT (R2 = 0.77, P < 0.01), than by the change in V̇o2max (R2 = 0.24; P = 0.02). Differences in PCRIT and W' account for some of the variability in responses to endurance exercise.NEW & NOTEWORTHY As the highest percentage of V̇O2max at which steady state conditions can be achieved, a person's critical power (PCRIT) strongly influences the metabolic strain of a given exercise. In this study we demonstrate that training-induced changes in endurance are more strongly related to the intensity of an exercise training program, relative to PCRIT than relative to V̇o2max. Thus, exercise may be more homogenously and effectively prescribed in relation to PCRIT than traditional factors like V̇o2max.


Assuntos
Treino Aeróbico , Treinamento Intervalado de Alta Intensidade , Adulto , Exercício Físico/fisiologia , Teste de Esforço/métodos , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Consumo de Oxigênio/fisiologia
3.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35955635

RESUMO

AIM: Mild heat stress can improve mitochondrial respiratory capacity in skeletal muscle. However, long-term heat interventions are scarce, and the effects of heat therapy need to be understood in the context of the adaptations which follow the more complex combination of stimuli from exercise training. The purpose of this work was to compare the effects of 6 weeks of localized heat therapy on human skeletal muscle mitochondria to single-leg interval training. METHODS: Thirty-five subjects were assigned to receive sham therapy, short-wave diathermy heat therapy, or single-leg interval exercise training, localized to the quadriceps muscles of the right leg. All interventions took place 3 times per week. Muscle biopsies were performed at baseline, and after 3 and 6 weeks of intervention. Mitochondrial respiratory capacity was assessed on permeabilized muscle fibers via high-resolution respirometry. RESULTS: The primary finding of this work was that heat therapy and exercise training significantly improved mitochondrial respiratory capacity by 24.8 ± 6.2% and 27.9 ± 8.7%, respectively (p < 0.05). Fatty acid oxidation and citrate synthase activity were also increased following exercise training by 29.5 ± 6.8% and 19.0 ± 7.4%, respectively (p < 0.05). However, contrary to our hypothesis, heat therapy did not increase fatty acid oxidation or citrate synthase activity. CONCLUSION: Six weeks of muscle-localized heat therapy significantly improves mitochondrial respiratory capacity, comparable to exercise training. However, unlike exercise, heat does not improve fatty acid oxidation capacity.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares , Mitocôndrias , Citrato (si)-Sintase/metabolismo , Temperatura Alta/uso terapêutico , Humanos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Oxirredução
4.
Medicina (Kaunas) ; 58(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744085

RESUMO

Background and Objectives: Muscle blood flow is impeded during resistance exercise contractions, but immediately increases during recovery. The purpose of this study was to determine the impact of brief bouts of rest (2 s) between repetitions of resistance exercise on muscle blood flow and exercise tolerance. Materials and Methods: Ten healthy young adults performed single-leg knee extension resistance exercises with no rest between repetitions (i.e., continuous) and with 2 s of rest between each repetition (i.e., intermittent). Exercise tolerance was measured as the maximal power that could be sustained for 3 min (PSUS) and as the maximum number of repetitions (Reps80%) that could be performed at 80% one-repetition maximum (1RM). The leg blood flow, muscle oxygenation of the vastus lateralis and mean arterial pressure (MAP) were measured during various exercise trials. Alpha was set to p ≤ 0.05. Results: Leg blood flow was significantly greater, while vascular resistance and MAP were significantly less during intermittent compared with continuous resistance exercise at the same power outputs (p < 0.01). PSUS was significantly greater during intermittent than continuous resistance exercise (29.5 ± 2.1 vs. 21.7 ± 1.2 W, p = 0.01). Reps80% was also significantly greater during intermittent compared with continuous resistance exercise (26.5 ± 5.3 vs. 16.8 ± 2.1 repetitions, respectively; p = 0.02), potentially due to increased leg blood flow and muscle oxygen saturation during intermittent resistance exercise (p < 0.05). Conclusions: In conclusion, a brief rest between repetitions of resistance exercise effectively decreased vascular resistance, increased blood flow to the exercising muscle, and increased exercise tolerance to resistance exercise.


Assuntos
Treinamento Resistido , Tolerância ao Exercício , Humanos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Fluxo Sanguíneo Regional , Descanso/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...